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This article presents a numerical investigation of convective heat transfer from a rotating cylinder with
cross-flow oscillation. A finite element analysis using Characteristic Based Split method (CBS) is devel-
oped to solve governing equations involving continuity, Navier–Stokes, and energy equations. Dynamic
unstructured triangular grid is used employing improved lineal and torsional spring analogy which is
coupled with the solver by the Arbitrary Lagrangian–Eulerian (ALE) formulation. After verifying the
numerical code accuracy, simulations are conducted to study convective heat transfer past a rotating cyl-
inder with cross-flow oscillation at Reynolds numbers of 50, 100, and 200. Different rotational speeds of
the cylinder normalized by free stream velocity, in the range of 0–2.5 are considered at various oscillating
amplitudes and frequencies and three different Prandtl numbers of 0.7, 6, and 20. Effects of oscillation
and rotation of cylinder on the temperature and flow field, vortex lock-on, mean Nusselt number, and
the pattern of vortex shedding are investigated in detail considering iso-temperature and iso-flux bound-
ary conditions on the cylinder surface. It is found that similar to the fixed cylinder, beyond a critical rotat-
ing speed, vortex shedding is mainly suppressed. Also by increasing the non-dimensional rotational
speed of the cylinder, both the Nusselt number and the drag coefficient decrease rapidly. However, in vor-
tex lock-on region, the Nusselt number increases in a large amount.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The flow and heat transfer around a circular cylinder have been
studied mainly due to the importance of vortex induced vibration
(VIV) phenomenon especially in the fields such as off-shore and
civil engineering, heat exchanger design, nuclear reactor fuel rod,
and steel cable of suspension bridge.

Various studies have been carried out for a flow over an oscillat-
ing cylinder using experimental numerical tools. Gerrard [1] stud-
ied vortex shedding mechanisms and presented a model to
describe the phenomenon. The study by Koopman [2] has investi-
gated the effect of cross-flow oscillation of a cylinder on the vortex
shedding frequency and determined the lock-on region where the
shedding frequency coincides with the oscillating frequency at low
Reynolds numbers. Griffin and Ramberg [3] studied the effect of
longitudinal oscillation of a cylinder on the vortex shedding includ-
ing lock-on phenomenon. By using visualization techniques, they
have also observed that the longitudinal spacing of the vortices
have an inverse relation with the oscillation frequency. Williamson
and Roshko [4] have investigated the effect of amplitude of oscilla-
tion on the wake formation. They declared that by increasing the
amplitude of oscillation, vortex shedding pattern develops as a pair
ll rights reserved.

ari).
of vortices on one side (2S) and a single vortex on the other side
(P + S). Hall and Griffin [5] simulated the oscillatory flow around
a fixed cylinder by applying a sinusoidal horizontal velocity com-
ponent on the incoming flow to investigate the occurrence of
lock-on. The study by Nobari and Naderan [6] has investigated
the flow pattern around cross-flow and inline oscillating cylinder,
where the effects of inline and cross-flow oscillation on the drag
coefficient, flow field, occurrence of lock-on, and wake pattern
are discussed in detail. Moreover, flow past a circular cylinder with
a rotary oscillation has been investigated experimentally by Filler
et al. [7] and numerically by Baek and Sung [8].

Forced convection from a heated cylinder with rotational oscil-
lation placed in a uniform stream was investigated by Mahfouz and
Badr [9]. In their study the lock-on phenomenon was detected and
its effect on the thermal field was determined. Their results indi-
cate that the lock-on phenomenon occurs within a band of
frequency near the natural frequency and the heat transfer coeffi-
cient increases significantly in the lock-on frequency range. Fu and
Tong [10] numerically studied the flow structures and heat transfer
characteristics of a heated cylinder oscillating transversely. They
showed that the interaction between the oscillating cylinder and
the vortex shedding dominates the state of the wake and the flow
and the thermal fields may approach a periodic state in the lock-on
regime at which the heat transfer is enhanced remarkably. As an
internal flow over an immersed oscillating body, a numerical
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Nomenclature

A non-dimensional amplitude
C Courant number
CD drag coefficient
CL lift coefficient
Cu convective matrix
c fluid velocity relative to mesh
F non-dimensional frequency
f force vector
f frequency
fs stabilizing vector
fs Strouhal frequency
h element size
Ku stabilizing coefficient
Ks diffusion matrix
k diffusion coefficient
M mass matrix
N shape function
n time step number
p pressure
Q source term
Re Reynolds number

St Strouhal number
t time
U velocity components
x coordinate, amplitude
x0 transformed coordinate

Greeks
a rotational velocity
d infinitesimal displacement
h implicit or explicit parameter
m kinematic viscosity
/ scalar variable
w grid velocity component

Superscripts
– average
* intermediate velocity

Subscript
ijk
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simulation was performed by Fu and Tong [11] to study the influ-
ence on the heat transfer rate from heated walls in a channel with
an oscillating cylinder. They found that the position and the diam-
eter of the cylinder affect significantly on the flow and thermal
fields in the channel flow.

Many attempts have been made for controlling the wake behind
a circular cylinder in recent years, especially for the purpose of
suppressing vortex shedding using passive and active controls.
The effects of the rotation of a cylinder on a laminar flow have been
investigated by Kang et al. [12] in the fully developed stage involv-
ing vortex shedding at 47 < Re < 200. The rotation of a cylinder in
a viscous uniform flow is expected to modify wake flow pattern
and vortex shedding configuration which may reduce flow-in-
duced oscillation or augment the lift force. Ingham and Tang [13]
numerically investigated the rotating cylinder flow Re < 47 at rel-
atively small non-dimensional rotational speeds ða < 3Þ. They
found that although the vortex shedding does not occur in the
wake region, the rotation delays and inhibits the boundary-layer
separation. The study by Badr et al. [14] numerically investigated
unsteady flow at Re ¼ 50, 100, and 200, focusing on the flow pat-
tern during an early time period after the impulsive rotation and
translation of a cylinder. Tang and Ingham [15] have examined
steady flow at Re ¼ 50 and 100 in the rotational speed range of
0 < a < 1 by solving time-independent governing equations and
have presented the changes in the flow variables.

However, so far there is no study on the heat transfer character-
istics of the flow past a rotating cylinder with cross-flow oscilla-
tion. This is the main concern of the present paper. Here, the
effects of rotation of the cylinder with cross-flow oscillation on
the heat transfer are studied in detail. The two dimensional gov-
erning equations are solved on a moving unstructured mesh using
a finite element method based on the CBS algorithm coupled by
ALE formulation. Simulations are conducted at moderate Reynolds
numbers of 100, 200, and 300 considering two different thermal
boundary conditions of iso-temperature and iso-flux on the cylin-
der surface. Effects of different non-dimensional physical parame-
ters consisting of Reynolds number, Strouhal number, rotating
speed ðaÞ, Nusselt number, Prandtl number, oscillating amplitude
and frequency on the heat transfer are investigated in both lock-
on and non-lock-on regions.
2. Governing equations

Here two-dimensional incompressible viscous flow over a
rotational cylinder with cross-flow oscillation is considered to
study the heat transfer from either iso-temperature or iso-flux
cylinder surface. The governing equations consisting of continu-
ity, momentum, and energy equations can be written in the
concise form as
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where Ui denotes the velocity components, p the pressure, m the
kinematic viscosity, T the temperature, k the conductivity, and Cp

the specific heat capacity.
In this study Eqs. (1)–(3) are solved in a deforming boundary

domain. Consequently, the ALE formulation [16,17] is used as
follows:
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where ci ¼ ui � wi is the fluid velocity relative to the coordinates at-
tached to the grid. Hence, wi denotes the grid velocity components.
It is easy to observe that Eqs. (4) and (5) become a Lagrangian equa-
tion when the grid velocity, wi, equals to the fluid velocity, ui, and
becomes an Eulerian equation when wi ¼ 0.

Dynamic fluid grids are used for the solution of the flow with
moving boundaries employing the arbitrary motion of two-dimen-
sional dynamic unstructured fluid grids controlled by both linear
and torsional springs to protect the grid against the deformation
causing instabilities in the numerical solution. More details of
the method can be bound in the study carried out by Farhat
et al. [18].



Fig. 1. One-dimensional characteristic-Galerkin method.
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The governing equations are solved by a characteristic based
split (CBS) finite element method in which the splitting procedure
follows the algorithm initially introduced by Chorin [19] for
incompressible flow problems in the finite difference context. A
similar extension of the split to the finite element formulation
has been carried out for the first time by Zienkiewicz and Codina
[20], which provides a fully explicit algorithm for incompressible
flows. A C++ computer code is used to solve the governing equa-
tions on a dynamic unstructured two-dimensional grid.

3. Numerical scheme

To split along the characteristics, a typical scalar convection–
diffusion equation is considered as
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where U is the convective velocity. Since Eq. (6) is not self-adjoint,
therefore, the result of standard Galerkin formulation is not opti-
mal. To deal with this problem, a new independent variable is intro-
duced as dx0 ¼ dx� U dt which transforms the convection–diffusion
equation to the following self-adjoint form:
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where the convective acceleration term disappears and it enables
the optimum results to be obtained using the standard Galerkin
approximation in Eq. (7). In one-dimensional case with no conduc-
tion or source term, k ¼ 0 and Q ¼ 0, the solution of Eq. (7) results
in /ðxÞ ¼ /ðx� UtÞ ¼ constant assuming constant U velocity. This is
a typical equation of a wave propagation even if the conduction or
source term is not zero. The time discretization of Eq. (7) along the
characteristics can be written as
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where h is zero in fully explicit case and between zero and unity in
the semi- and fully implicit cases, respectively. To avoid difficulties
due to mesh updating in moving coordinates, the alternative form
can be considered using Taylor expansion.
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where d ¼ UDt is the distance traveled by the fluid particle in x
direction and U is the average value of U along the characteristics
as shown in Fig. 1. Different approximations of U lead to different
stabilizing terms. The most common choice for the average velocity,
which is also used in this paper, is introduced by Zienkiewicz and
Codina [20,21].
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Using Taylor expansion to substitute Eq. (12) into Eq. (8) and
neglecting higher order derivatives considering h ¼ 0:5, the follow-
ing equation can be obtained:
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where nþ 1
2 terms are approximated by n to get the fully explicit

version of the algorithm.
The final form of the explicit discretization of the multi-dimen-

sional convection–diffusion equation in indicial conservative form
can be written as
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Since a fully explicit solution needs no iterative process, in practice
fully explicit form is much easier to handle. The CBS algorithm for
the solution of Navier–Stokes equations is expressed in the follow-
ing order:

1. Solution of momentum equation eliminating pressure term (Eq.
(15)).

2. Calculation of pressure from Poisson equation (Eq. (17)).
3. Correction of velocities (Eq. (16)).
4. Calculation of energy equation or any other scalar equation.

In the first step, a new auxiliary velocity U� is defined as
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This represents the first part of the split procedure. To determine
the pressure value over the entire solution domain, the velocities
are corrected as
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The solution of this equation is the third step of CBS algorithm
where the pressure is considered as a known quantity, but it is
corrected in the second step. Taking divergence of both sides of
Eq. (16) and using continuity equation, Eq. (16) changes into the
Poisson equation for the pressure field.
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Fig. 2. Numerical grid used to simulate flow over the rotating cylinder with cross-
flow oscillation, (a) entire domain with 3945 nodes and 7798 elements (b) grid
close up and boundary-layer elements in the vicinity of cylinder.
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Fig. 4. Mean lift and drag coefficients vs non-dimensional rotational speed ðaÞ for
rotating fixed cylinder at Re ¼ 100 comparing with previous work [12].
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Finally, the discretized form of energy equation can be expressed as

T� � Tn ¼ Dt �uj
@T
@xj
þ m

@2T
@xj@xj

" #n

þ Dt2

2
uk

@

@xk
uj
@T
@xj

� �n

: ð18Þ

At this stage all the flow field variables are known in the new time
step of nþ 1. Now the derived equations may be solved by standard
Galerkin finite element procedure. To do so, the computational do-
main is discretized into linear triangular elements. In CBS method, it
is possible to use the same degree of shape functions for pressure
and velocity approximations without having any numerical oscilla-
tions in the pressure field [22]. More detail of discretization is avail-
able in Appendix A.

It is obvious that the CBS algorithm in the explicit form is only
conditionally stable. To determine the time step size of the
Re
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Fig. 3. Variation of St vs Re for fixed cylinder compared with the experimental
results [23].
solution, two stability conditions exist. The first one is concerned
with the convective terms and is given as the CFL condition.

Dt ¼ C
h
juj ; ð19Þ

where 0 < C < 1 is the Courant number ðDtu=hÞ in which h is the
element size. The second stability condition is due to diffusion
and can be expressed as

Dt 6
h2

4k
: ð20Þ

To avoid small time step sizes due to the existence of boundary-
layer elements, diffusion terms are computed implicitly and conse-
quently the second stability condition may be ignored.

The geometry of the problem and the grids used in the numer-
ical solution are shown in Fig. 2. No slip boundary condition is
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Table 1
Non-dimensional frequencies and amplitudes used for cross-flow oscillating cylinder.

Non-dimensional amplitude (A) 0.2, 0.4, 0.6
Non-dimensional frequency (F) 0.6, 0.8, 1, 1.3
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Fig. 6. Variation of Strouhal number vs. non-dimensional rotational speed for
various Re numbers from present study and from Ref. [12].

Fig. 7. Temperature field of rotating cylinder with cross-flow oscillation at the beginning
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applied on the cylinder and at the inlet and at the two horizontal
boundaries away from the cylinder, the velocity is considered as
the free stream velocity. At the outflow, the free boundary condi-
tion is applied, which is equivalent to extending the validity of
weak form of the governing equations to the outflow. For the pres-
sure, Neumann boundary conditions are used at all the boundaries
except at the outlet where the constant pressure is applied. To
study the heat transfer form a rotating cylinder with cross-flow
oscillation, two different thermal boundaries consisting of iso-tem-
perature and iso-heat flux at the cylinder are taken into account.
Also, the initial conditions for the velocity and the temperature
are considered as zero.

4. Numerical code accuracy

The accuracy of the numerical code developed here is tested by
comparing the numerical results obtained with the experimental
data available considering various aspects. The first case deals with
the verification of the variation of Strouhal number with respect to
the Reynolds number for the fixed non-rotating cylinder. As shown
in Fig. 3, there is a good agreement between the experimental data
and the current computational results. In the second case a flow
past a rotating cylinder is simulated, and the drag and lift coeffi-
cients are compared with the previous work in Fig. 4. As is evident
from the figure, the present computed results indicate a very good
agreement with the previous work [12], where the maximum error
is 6%.

To evaluate the performance of energy equation solution, the
variation of average Nusselt number of the fixed cylinder is com-
pared with the experimental results [24] at a wide range of Re
and Pr in Fig. 5. It is obvious that above Re ¼ 300, due to the three
of three consecutive cycles when Re = 100, a ¼ 0:5, and A = 0.2, (a) F = 1, (b) F = 0.6.
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dimensionality of the nature of problem, the predicted results of
the written code deviate from the experimental results but below
that a reliable agreement can be observed.
5. Results and discussion

In this section, the numerical results obtained for the convective
heat transfer from an incompressible flow over a rotating cylinder
with cross flow oscillations are investigated considering two differ-
ent thermal boundary conditions on the cylinder surface involving
the iso-temperature and iso-flux.

The oscillatory motion of the cylinder is simulated as

x ¼ constant;
y ¼ Y sinð2pftÞ;

ð21Þ

where, Y and f are amplitude and frequency of oscillation, respec-
tively. Values of non-dimensional amplitudes ðA ¼ Y=dÞ and
non-dimensional frequencies ðF ¼ f=fsÞ used for the cross-flow
oscillations of the cylinder are listed in Table 1 where fs is the Strou-
hal frequency. Variation of the Strouhal number with respect to the
rotational speed ðaÞ and the comparison with the data from [12] is
shown in Fig. 6. From this figure it is obvious that the rotation of the
cylinder does not significantly affect on the Strouhal number.

Visualization of the vorticity and the temperature field in the
flow over a rotating cylinder with cross-flow oscillation helps
understand different physical phenomena taking place in the flow
field such as vortex shedding and the corresponding lock-on status.
Hence the temperature field at Re ¼ 100; a ¼ 0:5, and A ¼ 0:2 are
Fig. 8. (a) Temperature field and streamlines, (b) vorticity field for cross-flow o
shown in Fig. 7 at the beginning of three consecutive cycles for
two different oscillation amplitudes. The shedding vortices in this
figure appear as the lumps of heated fluid convected away from
the cylinder. The left column in Fig. 7 ðF ¼ 1Þ is concerned with
the lock-on phenomenon and the right column ðF ¼ 0:6Þ is associ-
ated with the non-locked-on case. Due to lock-on phenomenon,
the vortex patterns in the left column of Fig. 7 are similar to each
other resulting from the vortex shedding synchronization with
the cylinder motion.

Figs. 8 and 9 show the vorticity and the temperature fields along
with the streamlines corresponding to a ¼ 0:5 and 1.5 at four dif-
ferent times of a complete cycle for Re ¼ 100; A ¼ 0:2, and F ¼ 1.
The mechanism of the heat diffusion moving downstream is clearly
shown in these figures where the fluid contained within each vor-
tex gets cooler as it moves away from the cylinder. It is clearly
shown that the vortex shedding developing at a ¼ 0 also occurs
at the low values of non-dimensional rotational speed. Critical va-
lue of a beyond which the vortex shedding is mainly suppressed is
equal to 2 at Re ¼ 100. For a < acritical, rotational effects are con-
fined to the region near the cylinder surface. By increasing a, the
negative vorticity on the upper side of the cylinder becomes more
dominant than the positive vorticity on the lower side. This makes
the vortices to go upper in the flow field and strengthens the upper
vortex.

It can be also observed that the Nu distribution at the middle of
the cycle is a mirror image of that at the end of it, which explains
the asymmetry of the thermal field every half cycle. This phenom-
enon can be ascertained by comparing the isothermal patterns at
the beginning and at the half of the oscillation cycle in Figs. 8–10.
scillating cylinder with rotation at Re ¼ 100; A ¼ 0:2; F ¼ 1, and a ¼ 0:5.
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Subsequently, as shown in the right column of Fig. 10, for
a > acritical the flow has two vorticity bubbles attached to the cylin-
der and the vortex shedding is suppressed to only one vortex
which sheds in the third quarter of the cycle. As a increases further,
the bubbles become more thinner and more inclined in the direc-
tion of rotation.

After studying different aspects of the vorticity and temperature
field, now the characteristics of the mean Nusselt number and drag
forces exerted on the rotating cylinder with cross-flow oscillation
is investigated. Here the Nusselt number and the lift and drag
coefficients are averaged based on the cycle time and along the
cylinder surface. Variations of the Nusselt number and drag coeffi-
cients at various combinations of non-dimensional rotational
speeds, Reynolds numbers, and amplitude and frequency of oscilla-
tions are shown in Figs. 11–13. The Nusselt number is defined as

NuT ¼ �
@Ts

@n
; ð22Þ

where Ts is the surface temperature and n is the unit vector normal
to the boundary. Although process of vortex shedding depends on
the amplitude and frequency oscillation, it has a direct effect on
the heat convection resulting from the amount of the heat carried
by each vortex. The shedding frequency and the size of the vortices
are both important factors influencing on the heat convection pro-
cess. Fig. 11 shows the variation of the Nusselt number with respect
to the non-dimensional rotational speed of the cylinder at the
various Reynolds numbers and amplitudes of oscillation. Frequency
of oscillation is chosen in such a way that the lock-on condition
occurs. It is observed that by increasing the Reynolds number in a
trend similar to the fixed cylinder, the Nusselt number increases.
As a increases due to the vortex shedding suppression and the
Fig. 9. (a) Temperature field and streamlines, (b) vorticity field for cross-flow
thicker thermal boundary-layer, the mean Nusselt number
decreases (Fig. 11). As is evident from Fig. 11, by increasing the
amplitude of oscillation the relative velocity of the cylinder in-
creases, causing the Nusselt number to increase.

The behavior of the Nusselt number in the lock-on region is
further investigated in Fig. 12 where the fixed rotating case also
included. In this figure the Nusselt number is depicted at two fre-
quencies of oscillation which are lower and higher than the Strou-
hal frequency. At the frequency below the Strouhal frequency
(F = 0.6 in the figure), the Nusselt number is nearly the same as
the fixed cylinder and the slight increase is due to the higher veloc-
ity of the fluid in the vicinity of the cylinder. As the frequency of
oscillation increases up to the lock-on occurrence (F = 1 in the fig-
ure), the Nusselt number increases indicating heat transfer aug-
mentation. The major part of the Nusselt number increment
originates from the vortex synchronization phenomenon. Similar
trends as explained in Fig. 11 can be observed in this figure.

As a sample result, the mean drag coefficient with respect to the
non-dimensional rotational speed of the cylinder is shown in Fig. 13
at various Reynolds numbers and amplitudes of oscillation in lock-
on region. It is seen that by increasing Reynolds number in a trend
similar to the fixed cylinder, the drag coefficient decreases. Further-
more, in the case of rotating cylinder, the friction drag is of the same
order of magnitude as the pressure drag. By increasing a, the
relative velocity of the cylinder (friction drag) increases with the
decrease in the pressure drag, resulting in the reduction of the total
drag.

The behavior of drag coefficient is similar to the Nusselt number
which is explained in Fig. 12 where the drag coefficient is depicted
at two frequencies of oscillation which are less and higher than the
Strouhal frequency. This figure also compares the drag coefficient
oscillating cylinder with rotation at Re ¼ 100; A ¼ 0:2; F ¼ 1, and a ¼ 1:5.



Fig. 10. Streamlines and vorticity field of cross-flow oscillating cylinder for the case of super critical non-dimensional rotational speed, a ¼ 2:5; Re ¼ 100; A ¼ 0:2, and F ¼ 1.
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cross-flow oscillating cylinder at different values of Re and A for F ¼ 1.
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of the oscillating cylinder with the results of the fixed cylinder. At
the frequency less than the Strouhal frequency (F ¼ 0:6 in the fig-
ure), the drag coefficient is nearly the same as the fixed cylinder.
However, by increasing the frequency of oscillation up to the
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Fig. 13. Variation of mean drag coefficient vs. non-dimensional rotational speed of
cross-flow oscillating cylinder at different values of Re and A for F ¼ 1.

Table 2
Mean Nusselt number for cross-flow oscillation at different Pr and A for Re ¼ 100.

a Pr = 0.7 Pr = 6 Pr = 20

A = 0.2
0.5 9.2 41.3 75.4
1.5 7.9 35.2 70.4
2.5 7.1 25.8 50.7

A=0.4
0.5 13.6 61.4 105.2
1.5 13.0 55.7 91.4
2.5 11.4 52.2 76.5
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5410 J. Ghazanfarian, M.R.H. Nobari / International Journal of Heat and Mass Transfer 52 (2009) 5402–5411
lock-on occurrence (F ¼ 1 in the figure), the drag coefficient
increases.

Values of the mean Nusselt number on the cross-flow oscillat-
ing cylinder at different Prandtl numbers and amplitudes of oscil-
lation for Re ¼ 100 are listed in Table 2. It is seen that by increasing
the rotational speed of the cylinder, the Nusselt number decreases.
Also increasing the Prandtl number results in the reduction of the
thermal boundary-layer thickness causing a large temperature
gradient around the cylinder which increases the mean Nusselt
number.

For the iso-flux boundary condition, the definition of the local
Nusselt number is as follows:

NuQ ¼
1

T�s � T�1
; ð23Þ

where T�s is the non-dimensional surface temperature and T�1 is the
non-dimensional free stream temperature. The variation of the
mean Nusselt number with respect to the non-dimensional rota-
tional speed of the cylinder corresponding to the constant heat flux
boundary condition in the cross-flow oscillating case is shown in
Fig. 14 at different values of Pr for F ¼ 1; A ¼ 0:4, and Re ¼ 100.
Similar trends as explained in the iso-temperature boundary condi-
tion are also observed in this case.

6. Conclusions

A numerical study of two-dimensional forced convection over a
rotating cylinder with a cross-flow oscillation is carried out using a
CBS finite element method to solve the governing equations
including continuity, full Navier–Stokes, and energy equations.
The CBS scheme is coupled to the dynamic grid using the ALE for-
mulation. The moving grid technique which is based on the mod-
ified torsional spring analogy is used to simulate large boundary
movements easily.

The variations of the mean Nusselt number, the drag and the lift
coefficients with respect to the non-dimensional rotational speed
of the cylinder, amplitude and frequency of oscillation, Reynolds
number, and Prandtl number are studied in detail. It is found that
similar to the fixed cylinder case, a critical non-dimensional rota-
tional speed exists beyond which the vortex shedding is mainly
suppressed. The magnitude of critical non-dimensional rotational
speed is approximately the same as the fixed cylinder. Also the
numerical results obtained indicate that the average Nusselt num-
ber fluctuates at twice the cylinder frequency with remarkable
enhancement in the heat transfer at high frequencies within the
lock-on region. Similar to the velocity field, the thermal field in
the wake region is influenced by the vortex shedding process.
The vortex lock-on causes the Nusselt number, drag and lift forces
to increase dramatically. On the other hand, the drag and the
Nusselt number decrease with respect to the angular velocity
due to thickening the thermal boundary-layer thickness.
Appendix A

Using the same shape functions for all variables, it can be
written

Ui ¼
X3

a¼1

NaUa
i ; p ¼

X3

a¼1

Na�pa; U�i ¼
X3

a¼1

NaU�ai ; T ¼
X3

a¼1

NaTa;

ð24Þ

where overline represents the nodal quantities. Eqs. (15)–(18) are
now weighted by NT and integrated over the entire domain.
Applying integration by parts for the viscous terms, the discretized
steps of CBS scheme become
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MðU� � UnÞ ¼ �Dt CuUþ Ks�u � f � DtðKuU� fsÞ
� 	n

; ð25Þ

DtH�pnþ1 ¼ GU� � fp
; ð26Þ

DUi ¼ DU�i þM�1Dt GT �pnþ1 þ Dt
2

P�pn

� �� �
; ð27Þ

Mð�Tnþ1 � �TnÞ ¼ �Dt CT
�Tþ 1

qCp
ðKT T � feÞ � DtðKu

�T� fesÞ
� �n

; ð28Þ

where the coefficient matrices are defined as

M ¼
Z

X
NTNdX; Cu ¼ CT ¼

Z
X

NT @ðuiNÞ
@xi

dX;

Ks ¼
Z

X

@NT

@xi
m
@N
@xi

dX; f ¼
Z

X
NT Q dXþ b:t:

G ¼
Z

X

@NT

@xi
NdX; H ¼

Z
X

@NT

@xi

@N
@xi

dX;

fp ¼ Dt
Z

C
NT nT �Un � Dtrpnþ1

� 	
dC;

fe ¼
Z

C
NT nT k$T dC;

P ¼
Z

X

@

@xi
Ntui

@N
@xj

dX; KT ¼
Z

X

@NT

@xi
k
@N
@xi

dX;

ð29Þ

where b.t. stands for integrals along region boundaries. Stabilizing
matrices are

Ku ¼ �
1
2

Z
X

@

@xi
ðuiN

TÞ @
@xi
ðuiNÞdX;

fs ¼ �
1
2

Z
X

@

@xi
ðuiN

TÞQ dX:
ð30Þ
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